RNA Sequencing (RNA-Seq)

 

RNA sequencing (RNA-Seq) is a highly effective method for studying the transcriptome qualitatively and quantitatively. It can identify the full catalog of transcripts, precisely define gene structures, and accurately measure gene expression levels.

Our RNA-Seq services provide unparalleled flexibility in analyzing different RNA species, including coding, non-coding, and small transcripts, from a wide range of starting material using long- or short-read sequencing. Various RNA-Seq service options are available, including total, small, and single-cell RNA-Seq with RNA-Seq data analysis from a wide range of starting materials using short- or long-read sequencing. Our U.S.-based processing and support provides the fastest and most reliable service for customers in North America.

For RNA-Seq experiments using FFPE tissue or other low-quality samples, submit an inquiry about our highly-sensitive RNA exome solution.


How to Improve Your RNA-Seq Data
with UMIs and ERCC RNA

RNA-Seq is susceptible to bias and variability. Learn how UMIs and ERCC RNA
spike-ins can help you generate more accurate gene expression data.


 

 


How to Improve Your RNA-Seq Data
with UMIs and ERCC RNA

RNA-Seq is susceptible to bias and variability. Learn how UMIs and ERCC RNA
spike-ins can help you generate more accurate gene expression data.


 

 

RNA Extraction & Library Preparation

 

Having performed over 220,000 sample extractions, our experienced scientists can extract RNA from over 30 standard and hundreds of custom samples types to ensure RNA integrity and quality.​

We also offer several library preparation protocols tailored to meet your project requirements. In addition to standard and stranded poly(A) selection methods, we offer rRNA depletion for FFPE, poor-quality, and ultra-low input samples containing as few as 10pg of RNA or just a few cells. We also offer optional controls such as unique molecular identifiers (UMIs) and ERCC (External RNA Controls Consortium) RNA spike-ins to improve RNA-Seq data quality and quantification accuracy.

Sample Types

RNA Sequencing Services

Single-Cell RNA-Seq

Single-cell RNA sequencing analyzes gene expression at single-cell resolution for heterogeneous samples. The 10x Genomics® Chromium™ platform provides advanced transcriptional profiling of thousands of individual cells.

Ultra-Low Input RNA-Seq

Ultra-low input RNA sequencing provides bulk expression analysis of samples containing as few as 10 pg of RNA or just a few cells. Recommended for sequencing cells after fluorescence-activated cell sorting (FACS) or immunoprecipitation (RIP-Seq).

Long-Read Isoform Sequencing

Iso-Seq (isoform sequencing) reads full-length contiguous transcripts. Applications include genome annotation, gene fusion detection, novel transcript discovery, and alternative splicing analysis.


Standard RNA-Seq

Standard RNA sequencing is our most popular option for profiling gene expression, enabling the analysis of coding (mRNA) and long non-coding RNA (lncRNA).

Strand-Specific RNA-Seq

Strand-specific RNA sequencing provides gene expression information with relation to strand orientation. Used for genome annotation, analysis of anti-sense/overlapping transcripts, and novel transcript discovery.

Small RNA-Seq

Small RNA sequencing enables analysis of miRNA and other small RNA species. Provides small RNA discovery and profiling.


CLIA RNA-Seq

RNA-Seq services performed in a CAP/CLIA laboratory for clinical applications. Custom CLIA validations for specific assays.

 

Unsure of the best RNA-Seq solution for your project?

Use our step-by-step guide

 


Find the right NGS solution for your project using our interactive selection tool.

QUICK START GUIDE

Exploring Bioinformatics for Genomic and Transcriptomic Sequencing Data

A gateway into the world of bioinformatics

  • Discover what tools you’ll need for
    bioinformatics analysis
  • Explore helpful resources to perform more in-depth exploration
  • Follow step-by-step instructions on how to analyze data

Download Now

NEW TO OUR PCR PORTFOLIO

Digital PCR (dPCR)

Detect your target sequences with unmatched accuracy


Features & Benefits

  • Building

    Superior Data Quality
    Exceeding manufacturer’s benchmarks
  • Building

    Fast Turnaround
    Starting at 1 week for sequencing
  • Building

    European Provider
    Sequencing available at our lab in Leipzig, Germany
RNA extraction from hundreds of sample types to accommodate your starting material
Highly accurate sequencing the first time with UMI and ERCC control add-ons
Complete solutions with downstream data analysis, including customizable options
Dedicated Ph.D.-level support at every step with real-time project updates through our online ordering system
Automated workflows to increase scalability and improve reproducibility
CLIA RNA sequencing available for clinical research (inquire for more information)

Transcriptomics Technical Resources

Technical Specifications

Example Data

Sample Submission Guidelines

Frequently Asked Questions

GENEWIZ Citations

eBook | A Guide to RNA-Seq

There are multiple factors to consider when selecting which RNA-Seq technique is the right approach for your project. In this eBook, discover the what, why, and how of RNA-Seq, the most common types of assays and platforms, and uncover insights into how to select the best method to achieve optimal results for your research.​

Blog | How to Improve Your RNA-Seq Data with UMIs and ERCC RNA

Measuring gene expression with RNA-Seq is susceptible to bias and variability. In this blog post, learn how unique molecular identifiers (UMIs) and ERCC RNA spike-ins can help you generate more accurate gene expression data.

Quick Start Guide | Exploring Bioinformatics for Genome and Transcriptome Sequencing Data

For those new to bioinformatics, analyzing massive amounts of NGS data can be a daunting task. Download Azenta’s bioinformatics quick start guide to learn how to analyze whole genome sequencing (WGS) and RNA sequencing (RNA-Seq) data with bioinformatics tools to reveal biological insights for your research.

Webinar| Non-Classical Sources of Tumour-Specific Antigen in Checkpoint Inhibitor Response

Developing immunotherapies for cancer can be difficult due to the variation of immune response from patient to patient. In this webinar, Dr. Litchfield from UCL Cancer Institute presents his team’s exploratory research using a multiomics approach to better understand the diversity of immune response to cancer and highlights their findings of an alternative source of a tumour-specific antigen in checkpoint inhibitor (CPI) response.

Webinar Series | Advancing Transcriptomics: Gene Expression Screening, Single-Cell RNA-Seq, and Beyond

With this two-part webinar series, go beyond traditional transcriptomics and learn about the various NGS approaches available for gene expression analysis. In part 1, we take an in-depth look at various gene expression approaches, including RNA-Seq, single-cell RNA-Seq, digital spatial profiling, and more. In part 2, we explore the data generated from these approaches and how they can complement each other and confirm findings.

RNA-Seq Bioinformatics Workshop & Roundtable Discussion

RNA-Seq bioinformatics can be complex and difficult to decipher. To help make it more approachable, this workshop and roundtable discussion, led by Azenta Life Sciences’ bioinformatics manager Brian Sereni, explores the bioinformatics pipeline, explains NGS results, and addresses common challenges and FAQs for RNA-Seq bioinformatics analysis.

Tech Note | Add More Life to Your Data: Optimizing Single-Cell RNA-Seq with Dead Cell Removal

Obtaining samples with high cell viability can be difficult for many experiments but is necessary for success on the 10x Genomics® Chromium™ platform. This tech note describes how Azenta scientists used optimized single-cell workflows, including dead cell removal, to overcome low viability and generate high-quality sequencing data.

Case Study | Uncovering Cell Type-Specific Expression Profiles in the Tumor Microenvironment with Ultra-Low Input RNA-Seq

Biomedical specimens are often restricted to minute quantities, posing major limitations to RNA-Seq. This case study shows how approximately 50 sorted cells from a glioblastoma can produce transcriptomic data comparable to RNA-Seq experiments that use millions of cells.

Case Study | Single-Cell RNA-Seq Analysis Identifies Rare Drug-Resistant Cancer Stem Cells

Cell populations are rarely homogeneous and synchronized in their characteristics. Standard RNA-Seq approaches are limited to reporting general expression levels thus omitting minor subpopulation profiles. This study highlights new single-cell RNA sequencing capabilities for identifying rare cells, characterizing their transcriptomes, and discovering potential biomarkers.

Tech Note | Full-Length RNA-Seq: A Novel Method to Assess Sequence Integrity for RNA Therapeutics

Strict quality control is required to maintain the integrity of manufactured products for RNA therapies, but current assays often present limitations. Learn how the novel full-length RNA-Seq approach from Azenta allows you to preserve the entire length of and effectively sequence the poly(A) tails of your mRNA products.

Tech Note | Isoform Sequencing on the PacBio Sequel® – Maximizing Output and Accuracy

Contiguous mRNA full-length sequencing (Iso-Seq) greatly simplifies genome annotation efforts and revolutionizes the discovery of novel RNA isoforms. This Tech Note discusses the advantages of the latest technologies combined with Azenta’s optimized workflow, and how this increases output and accuracy.

Tech Note | Achieving Phenotypic Profiling for Rapid Drug Discovery with High-Throughput Gene Expression Screening

High-throughput technologies are critical in performing phenotypic profiling for drug discovery applications. In this tech note, Azenta Life Sciences discusses the challenges associated with traditional approaches, such as microarrays and RNA sequencing, and offers an optimized assay to achieve high-quality phenotypic profiling at a reduced cost for rapid drug discovery.

 

What is RNA sequencing (RNA-Seq) used for?

RNA sequencing, or RNA-Seq, is used to identify the nucleotide sequence of the RNA strand and detect the quantity of RNA in a sample.

RNA-Seq provides a deeper insight into the transcriptome of a cell— enabling discovery of novel transcripts and differential gene expression analysis—by generating count data. In analyzing the count data, researchers can quantify RNA fragments and associate RNA sequences to respective genes in the sample.

What is the process of RNA sequencing (RNA-Seq)?

The process of RNA-Seq starts by isolating and fragmenting the RNA strand, then undergoing reverse transcription— synthesizing complementary DNA (cDNA)— and adding nucleotides to an RNA strand while copying the RNA strand simultaneously using next generation sequencing (NGS) technology.

How does RNA sequencing (RNA-Seq) analysis work?

RNA sequencing (RNA-Seq) analysis works by using a reference genome or transcriptome to map sequencing reads, quantifying the expression levels of the individual genes and transcripts, and identifying target genes and transcripts that are differentially expressed between samples. Researchers can perform de novo transcriptome assembly for new species with RNA-Seq using low concentrations of a starting sample, and/or with low-quality sample solutions.

 

NGS PLATFORMS

For information on our NGS platforms as well as recommended configurations of your projects, please visit the NGS Platforms page. Azenta does not guarantee data output or quality for sequencing-only projects.

Illumina
PacBio
10x Genomics
NanoString
Nanopore
Olink


How To Order


Email | Phone +49 (0)341 520 122-41